



Abstract—Localization and mapping are common

requirements in many robotic applications. Mobile robots often

rely on sophisticated sensors to obtain information about the

environment. However, when the sensing capabilities of the

robotic platform are limited, creating maps and keeping track

of the localization become cumbersome. Our project is aimed at

providing a solution to this problem by using computer vision

algorithms to extract information from the environment. More

specifically, we extracted images from the single camera in the

Rovio platform, and use them to detect obstacles, extract

distances, and keep track of the position and orientation of the

robot in order to enable autonomous navigation.

I. INTRODUCTION

ISION has become one of the most useful techniques in

robotic environments. Images provide extensive

information that can be used to implement common tasks

that enable robots to understand their surroundings. Since

cameras are usually cheap and power-efficient devices

compared to other more sophisticated sensors, the use of

computer vision becomes a good alternative for sensing

purposes. Nevertheless, extracting information from images

is not straightforward task. Images usually consist of two

dimensional grids composed of pixels that contain color and

brightness data. This representation maps real objects into

two dimensional structures and therefore the depth

information is lost. Consequently, distances and angles are

not easily identifiable as may be the case with other more

expensive sensors.

Currently, many frameworks already exist for doing

localization and mapping. Since these implementations are

not dependent on the type of sensing device, one should be

able to use the camera to sense the environment and then

feed the obtained data to the existing algorithms. As long as

accurate measurements are extracted, the robot should be

able to implement robust localization and mapping

techniques. The actual problem lies on obtaining the correct

information from images. Our main goal was precisely to

implement vision techniques to obtain accurate data, and

then use it to enable the robot to perceive the environment

and act accordingly.

Recently, the area of visual processing has become more

popular and significant research has resulted in very

sophisticated vision algorithms. More precisely in robotics,

the area of visual SLAM (Simultaneous Localization and

Mapping) is currently receiving much attention. Some good

examples are given in [2], [3], [4]. Some of the previous

work is based on using a single camera to obtain information

directly from images [3], whereas others use multiple

cameras to perform different types of triangulations in order

to obtain the desired information. [4]. One of our goals was

to implement similar approaches and combine them to

obtain accurate distances to obstacles.

The end goal of our project was to implement localization

and mapping using the single camera in the Rovio platform.

Rovio is a WIFI-controlled robotic webcam developed by

WowWee. It has navigation capabilities and it constantly

streams images that can be retrieved and processed. We

chose Rovio because toys and home applications are among

the most promising market fields for the use of vision in

robotics. In order to achieve localization and mapping we

divided our tasks into three stages. The first stage consisted

in accurately measuring the distance to the obstacles around

the robot. For this purpose, we combined multiple distancing

algorithms. The second stage consisted on keeping track of

the angle rotation of the robot while exploring the

environment. For this, too, we used vision techniques that

enable the robot to identify features that enable it to keep

track of orientation. Finally, the obtained data from the

distance detection and the localization was send to an

implementation of an occupancy grid that represents the

environment. The rest of the paper describes each of the

three stages in more detail. Our implementations were tested

in the robotics laboratory at Cornell University, and the

results are presented at the end.

II. OBJECT DISTANCING

A. General

To extract the distancing to the obstacles from the images,

we first used a combination of filters to extract the

edges. We use a 7x7 Gaussian filter to smooth out the image

in an attempt to ignore the edges normally detected in the

coloring of the carpet. The image is then converted to

grayscale. In order to extract the edges from the image we

use a canny filter with threshold values of 0.25 and .09 for

the initial detection and the connected edge detection,

respectively. This produces nice strong edges to base our

measurements on. These threshold values were varied and

the outputs analyzed to determine the best tradeoff in terms

of false ground edges and strong obstacle edges.

Visual SLAM using Rovio

Jeffrey Buente, Rohan Sharma and Daniel Mejía

V

B. Stereo Distancing

The stereo vision algorithm uses an image from each of the

Rovio’s head positions at a stationary position. This enables

us to determine the distance between the same edge in both

images, which correlates to an actual distance to the object.

The first step in this algorithm is to determine the pixel

distance between corresponding edges in each of the images.

Our approach was simply to find the bottommost edges at

each column of the image taken with the upper head

position. This was done with the upper image because the

lower image often detected edges in the carpet immediately

in front of the robot, while the vantage point of the upper

head position did not detect these edges. By only taking into

account the bottommost edges we were able to focus on the

obstacles in the immediate vicinity of the robot and did not

have to deal with more complex ways of determining what

constituted a unique distinct edge, and matching edges

between images. Using data obtained from controlled

experiments we determined the pixel distance ranges that

would be experienced in the lab environment, based on the

closest obstacle that would show up in both images being the

lower end and the size of the lab being the upper end of the

range. Since we are dealing with the closest edge to the

bottom in the upper image, the corresponding edge in the

lower image will be the first one seen in the same column

starting from the minimum pixel distance and moving to the

maximum. An edge that was not detected between these

ranges indicates a missing corresponding edge in one of the

images and that measurement is ignored.

The bottom edge could not be used from the bottom image

because of the existence of false edges detected in the carpet.

This is the reasoning behind using the bottom edge in the top

image and iterating through the range of possible pixel

distances from that edge to find the corresponding edge in

the lower image. A built-in Matlab regression algorithm

was used to fit the data points taken to a function that returns

the actual distance to an obstacle given the pixel distance

between the stereo images.

C. Ground Distancing

Two other algorithms were used to make the distancing

robust because of the subtle differences in edges detected by

the obstacle-carpet intersection. Depending on the lighting

and the particular obstacle edges would be detected at

different heights especially between the upper and lower

images most likely because of the vantage point difference.

For example, the edge detected between a trash can and the

carpet would always be higher than one detected on a wall at

the same distance. For this reason, to make this algorithm

robust and applicable to a real world environment with

varied obstacles it was necessary to make multiple

distancing algorithms to compensate. This second approach

involved using the absolute pixel distance from the bottom

of the image to range the objects. The theory behind this is

that further away obstacles appear higher up in the image, or

closer to the horizon. This enables us to determine a

mapping from the lowest edge pixel location in the image to

an actual distance for each of the upper and lower images.

Again, a built-in Matlab regression algorithm was used to fit

data points taken for each of the head positions to functions

that return the actual distance given the edge location in the

image.

The absolute pixel location of the bottom edges in the

image from the upper head position was already determined

from the stereo vision algorithm, so this merely required

passing that location into the distancing function. The pixel

location of the edges in the image from the lower head

position was a bit trickier. After some analysis of the edge

extracted images in different lighting environments it was

determined that the false edges detected in the carpet were

nearly always below a certain pixel location in the image.

Thus, any pixels below this point were discarded and the

pixel location of the lowest edges of the resulting image was

determined for each column. These locations were then

passed into the function to map the pixel locations of the

lower head position image into obstacle distances. An

example image is given in Figure 3 (the two seemingly

Fig. 1. Rovio image with head in lower

position and edge extraction.

Fig. 2. Rovio image with head in lower

position and edge extraction.
Fig. 3. Rovio lowest detected edges with

head in lower position and distance output

-200 -150 -100 -50 0 50 100
0

100

200

300

400

500

600

700
Combined

Stereo

Ground

Ground Up

random edges detected in the middle are actually objects on

the carpet).

D. Output Distance

In each of these algorithms the image was segmented into

24 discrete measurements, each represented with its own

angle off of the orientation of the robot. Through testing we

had determined that the Rovio’s angle of vision was around

48.5 degrees horizontally. The distances between the pixels

corresponding to the discretely sampled angles were

calculated using basic geometry theory. Assume a point

object at a distance of d from a straight line. The

perpendicular distance of the line from the point is going to

be at vertical angle of 0 degrees. However, when the angle to

the line form the vertical distance is varied on either side, the

distance change of the new point from the central point is

going to increase nonlinearly. Thus, to account for the

variation in the pixel point as the angle is varied from -24.25

to 24.25 (where 0 degrees corresponds the central pixel), a

simple sine function was used to account for the change in

pixels. This is given as follows:

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = 316 + 316 ∗ 𝑠𝑖𝑛𝑒
𝑥

48.5
∗ 90 (1)

Where x represents the angle that the pixel value is desired

and image width used was 632 pixels.

Thus the number of pixels associated with each of these

angles is non-uniform and the area representing an angle at

the edge of the image is larger than that in the center of the

image. The range of pixels corresponding to each angle was

taken to be from the center of the segments on either side of

that particular angle. In each segment the median value was

taken to be the measurement of that segment to ignore

extreme values.

These distances were plotting according to the angular offset

from the center of vision from the Rovio to plot the exact

location of the obstacle.

This gives us three different distance measurements to

work with, creating a more robust distancing algorithm.

After much testing and analysis it was decided that the most

effective way of combining these three distancing

approaches was to average them together. This averaging

was done for each of the 24 segments. An exception to this

combination is when the distance given by the absolute pixel

location for the image with the Rovio’s head in the lower

position is less than 80 mm. In this case the image with the

Rovio’s head in the upper position cannot see the

intersection of the carpet and the obstacle because the

distance is too small, so the lower head position

measurement is used. The reason these measurements are

averaged normally is that they generally compensate for

small errors because of the imperfections in the edge

detection and accuracy based on the size of the image.

These combined measurements are very accurate and almost

always give better results than any single algorithm.

Although the stereo vision is very accurate, it is imperfect

because of the edge detection picking up different edges

based on the differing perspectives of the rovio’s head in the

lower and upper positions. In the upper position, the

lighting can cause the rovio to detect a lower edge of the

obstacle because of its better vantage point of the

intersecting line between the carpet and the obstacle. This

mainly occurs for more distant obstacles because the further

away the object is the less defined the intersection is with the

lower head position. In fact, for close obstacles all of the

distancing algorithms give accurate values within 15mm of

each other.

III. SIFT LOCALIZATION

A. General

One difficulty we encountered when trying to obtain a map

of the environment was the inaccuracy of the movements of

Rovio. While mapping a specific section, the robot is

programmed to constantly rotate, take pictures, and process

them to obtain distances to obstacles. Nevertheless, every

time we send a specific movement command to the robot, it

has a significant error associated with it. Furthermore, the

commands would sometimes get lost in the network and the

program would not have any feedback on the actual actions

taken by the robot. Consequently, when rotating the robot

multiple times, the error would increase and the positions of

the obstacles would be mapped to wrong places in the map.

Moreover, the robot would not have information about its

orientation and therefore no more mapping would be

possible.

For this reason, we needed a way to read the angle

rotations that would allow it to keep track of its orientation

without relying on the actual commands. Since the camera is

the only sensing capability of Rovio, we decided to use a

vision approach to obtaining the angles. The method we

implemented consisted of extracting features from the

images using the SIFT algorithm and the comparing them to

obtain an estimate of the actual rotation angle.

B. SIFT

Scale-invariant feature transform is a computer vision

algorithm published by David Lowe [1] that extracts local

features from images. These features are scale and

orientation invariant, and to a certain extent, they are also

invariant to noise and illumination. From an intuitive

perspective, the algorithm works by applying a cascade of

filters at different scales, and then finding the features that

are invariant to certain transformations. From a user point of

view, the algorithm provides two important functions. The

first one is for feature extraction and it receives an image

input and outputs an array of descriptors that have feature

information, together with the index in the original image.

The second function is in charge of matching between two

different images. It receives the images, the descriptors array

for each of them and returns an array tuples of size two that

have the index of each image for each match.

For our project, we used an implementation of the protocol

for MATLAB developed by Andrea Vedaldi from the

University of California Los Angeles.

C. OUR IMPLEMENTATION

To keep track of the rotation angle of the robot we used the

invariant features provided by SIFT. The implemented

method consisted of using the images that were already

taken for the distancing algorithm, and perform feature

extraction using SIFT. After each rotation, a new picture is

taken and new features are obtained. The features from

subsequent angle positions are compared and their difference

is mapped to a rotation angle.

The feature descriptor provided by SIFT gives information

about the position and rotation of the features. Since we

know a priori that the robot is only rotated we can reinforce

the requirement that features must have very similar y-axis

position, and orientation, and features that do not fit these

requisites are discarded.

Initially, the idea was to either fit an experimental function,

or use a learning algorithm to accurately map the pixel

distance of the features to an able. Nevertheless, a simple

linear function using the able span of the Rovio camera and

the number of horizontal pixels of the image gave excellent

results. Figure 5 illustrates the angle extraction method. The

first two images are the pictures taken by Rovio. The left-

hand image is the one taken in the initial position, and the

right-hand image is the one taken after rotating left. The

second picture presents the extracted features from the

environment, and the green lines connect the features that

matched between the two pictures. Clearly, the images with

the features are a cropped version of the original images, and

this was done intentionally to increase the speed of the

Fig. 4 Feature extraction for angle estimation.

algorithm, because it is very time consuming. Furthermore,

we know that the bottom most part of the image which

includes the carpet is not going to be optimal for feature

extraction. In addition, we used a very high threshold for the

feature extraction function and for the matching function as

well. This is the reason for which there are very few green

lines in the image with feature matches.

Furthermore, at some instances the input angle to the

function was predefined, and the implemented function

could use this information to further increment the speed. In

these cases, the image would also be cropped vertically

because for example for a 20 degree rotation angle, we know

a priori that certain sections of the picture are not going to

match and we don’t need to use them in the extraction and

matching process.

Overall, the precision of the implemented technique was

very satisfactory. We found that after doing two full 360

degree turns with increment rotation of 20 degrees, the robot

would t the end have a mismatch of approximately 2 degrees

which is very accurate considering that there were 36 turns

involved and also considering that without our

implementation the robot could reach mismatches of more

than 60 degrees under the same circumstances.

IV. MAPPING

A. General

The above two sections describe the information that the

Rovio robot analyzes to define its environment. However, in

order to successfully navigate the robot in its surrounding, a

map of the environment is required to track the placement of

obstacles and the pose of the robot. Different options can be

used to represent the map of the environment but the two

basic options that were considered were a point cloud

representation and an occupancy grid.

B. Mapping Representation Considerations

A point cloud representation of the map displays the

actual distances that are calculated by the distancing

algorithms. This can give rise to obstacle features and

corners in the map. However, this method requires the

ranging information to be highly accurate such that the

obstacles can be given shape during representation. As will

be showed in the experiments sections, the distancing

algorithms have a certain error associated with them and

thus, the point cloud would not be able to account for the

variation in the ranging information and might skew the

shape of the obstacle as a result and would thus be

undesirable. Another con of using a point cloud in a real

time moving robot is that since each distance range found at

an angle is stored, the number of points to keep track of

could increase drastically. Because of these issues, a point

cloud was an inefficient way to keep track of obstacle

positions.

In our setup, an occupancy grid was more preferable

because of its discrete nature and limited memory usage. It

can be used to efficiently track an approximate position of

the obstacle and avoid it well before the robot reaches it. An

occupancy grid is represented by a mesh of cells (rows and

columns) and each cell has a certain fixed area on the map

associated with it such that all the points in that area are

represented by that singular cell. The area represented by a

cell of the occupancy grid can be set using any parameter/

condition as desired by the specific implementation. For

example, a very fine grid would give an (almost) point cloud

representation of the map. A very large cell area might

surround the robot with obstacles in the map even if there

are only a few surrounding the actual robot. For our

implementation, the maximum variation in the distancing

algorithms was used to determine the edge of a cell in the

map. Even though the map was represented as a discrete

grid, the robot movement was continuous.

To define whether an obstacle exists in the occupancy

grid, a threshold value was set such that if the number of

distancing points detected in a particular cell exceeded that

threshold, the cell would be marked as occupied. Thus, the

occupancy of a cell would depend on whether its probability

was high enough.

C. Control Sequence

A control sequence was implemented to control the

efficient movement of the robot and to ensure that the map

of the surrounding environment was created efficiently and

the pose of the robot was tracked accurately. The

following sequence was following by the Rovio robot in

mapping: (Initially, robot placed in some location on the

map with pose (0,0,0) corresponding to position and

orientation)

- Rotation sequence begin - At the current pose (starting

from the initial position), the robot was to move its

head up and down and grab the images corresponding

to the 2 head positions.

- These images were forwarded to the distancing

algorithm to find the distanced to each of the obstacles

at particular angles. These obstacles were mapped to

the occupancy grid using the current pose.

- The robot was then turned left by 20 degrees and an

image was grabbed at the new orientation. The SIFT

algorithm was provided with the image from before

and after the turning to determine the precise angle of

rotation during the turn. This angle change was

reflected in the robot pose as well.

- If the robot did not turn 360 degrees in the rotation

sequence, then the robot would keep on turning.

Otherwise, the rotation sequence would end and the

robot would analyze the current map to obtain the

most open or the cleanest direction that it can travel

in. It would calculate the approximate distance to

travel in this direction and would move until it is a

certain distance away from the map obstacle or edge.

- After traveling the required distance, the robot would

initiate the rotation sequence again and start building

another part of the map. It would discover new regions

of the map and would reinforce old areas as well.

This sequence corresponds to a semi-online SLAM

implementation as the robot only builds the map, localizes

itself and calculates the distances when it’s in the rotation

sequence but does not do any image processing while it is

moving towards its next goal position (as that would

introduce a large amount of lag in the movement). This

implementation gave a very good representation of the map

of the setup environment as is explained in the experiments

section.

V. EXPERIMENTS

A. Distancing

The distancing algorithms had to be calibrated for each

individual Rovio because of the non-uniformity in the design

of the Rovios. The camera angles of the Rovios were not all

exactly the same in the down position and the distances they

moved as well as the angle of the up position were varied

even more. This lead to acquiring data for many Rovios

until a working one was settled upon to use exclusively. The

data acquisition to fit functions to the stereo and each of the

ground distancing algorithms was performed by hand

because of a lack of a real distance sensor on the Rovio.

Thus we used two different obstacles, each of which gave a

slightly different behavior of the edges detected as

previously described. For each of these we took a number of

data points at discrete distances and recorded the edge

location of the obstacle in the edge extracted image for each

of the lower and upper head positions. After analyzing the

data patterns and fitting different function types to the data it

was determined that the data for each of the algorithms

followed exponential functions. Using Matlab’s built-in

regression fitting algorithm the data-sets were fit to function

of the form

𝑓 𝑥 = 𝑎𝑒𝑏∗𝑥 + 𝑎𝑒𝑏∗𝑥 (2)

200 250 300 350
0

100

200

300

400

500

600

700

800

900

Pixel Location

O
b
je

c
t

D
is

ta
n
c
e

Rovio low position ground distance function

data-set 1

data-set 2

exponential fit

320 340 360 380 400 420 440

100

200

300

400

500

600

700

Pixel Location

O
b
je

c
t

D
is

ta
n
c
e

Rovio high position ground distance function

data-set 1

data-set 2

exponential fit

100 110 120 130 140 150 160
0

100

200

300

400

500

600

700

O
b
je

c
t

D
is

ta
n
c
e

Pixel Distance

Rovio Stereo distance function

data-set 1

data-set 2

exponential fit

 Figure 5: Vision Distancing data

The data used for the ground algorithms was simply the

pixel location of the obstacle in their respective images. The

data used for the stereo algorithm was the pixel difference

between the two edges. The independent variable was the

pixel location, or distance, outputting the actual distance to

the obstacle. The data and exponential function fit to each

of them are given in Figure 5.

B. Mapping

To test the rovio’s distancing algorithms and SIFT

localization, an environment was set up with a variety of

features. Obstacles were included in the environment that

had a well defined edge and that could be mapped easily.

Other varied obstacles were also included to test the

distancing algorithms on a wide variety of surfaces. The

distribution of the obstacles in the environment was varied

as well such that we could test obstacles that were closely

stacked and obstacles that were sparsely placed. The whole

setup was segmented into 2 sections such that the rovio is

able to go to a different section when its moving and map

distances to new obstacles placed in that section. A few

images of the environment as shown as follows and the

actual scaled environment representation is shown in

figure 6:

Fig. 6. Environment map (walls are thicker than they appear)

Using this environment, the control sequence was

executed to test the response of the rovio. As was shown in

the video during the poster session presentation, the rovio

was able to map the room very well at its initial location

and was able to find the cleanest direction in the map. It

was then able to travel in this direction and stop at a

certain distance away from the obstacle and map the

environment again. The following is a snapshot of the final

pose and map obtained by the rovio as shown in the video.

Fig. 7. Experimental map. Black = data point. Red = occupied grid

A to-scale mapping of the environment is given in Figure

6. This corresponds closely to the output of the mapping

function as given in Figure 7. In fact, all of the well defined

obstacles in the occupancy grid are very close to their actual

positions. The back desk is not considered a well defined

obstacle because it is off of the ground but its shadow

creates some edges, causing problems for the algorithm. As

can be seen in Figure 6 there is no concentration of pixels

for the desk, aside from the chair and backpack in the front

of it, because of the shadow edges. The distancing in

conjunction with angular localization and mapping worked

very well, accurately mapping the environment with an

average of 18.46 cm error. Table I gives some mapped

positions and actual positions of the same points. The actual

distances were roughly measured and are by no means

perfect, but there is a close correspondence between these

actual and mapped positions. The positions are based on the

starting position of the robot at 500,500. All measurements

are in cm.

 The algorithm performed very well given the varied nature

of obstacles used. This approach was used to determine the

robustness and ability of the algorithm to adapt to new

obstacles. More testing is necessary to verify it for varied,

larger environments. Also, since obstacle classification is

not performed this algorithm would not work well with tiled

floors with different colored tiles or edges that would be

detected between them.

TABLE I

Mapping vs. Actual Positions and Associated Errors

Mapped Position

(x,y)

Actual Position

(x,y)

Distance Error

(500,653) (500,659) 6 cm

(632,637) (649,653) 18.03 cm

(651,593) (649,571) 22.09 cm

(500,331) (500,350) 19 cm

(866,491) (886,493) 20.10 cm

(858,401) (841,402) 17.03 cm

(795,656) (795,629) 27 cm

Average Error 18.46 cm

VI. CONCLUSIONS

The unique challenges presented by the usage of Rovio robot

as the choice of mobile robot system allowed us to

efficiently optimize our code and develop algorithms and

control sequence to map out the environment and localize

the robot in it. The limitations offered by the rovio robot

with regards to connectivity, localization data and movement

allowed us to explore different techniques to improve

performance and dissect different aspects of the robot such

that we could create a good representation of the

surroundings. Given the extensive limitations of the rovio

platform, especially with the useless localization and control

commands, we were able to successfully map out a simple

environment using only a camera. This work can be

extended to different platforms and would be useful if

implemented in simple robots with visual sensors. More

work needs to be done to speed up the processing time and

optimize the algorithms to be more robust and work in

different environments with varying obstacles, but it has

been proven to be effective thus far. Future work in this area

can include SURF implementation for angular localization

and feature magnification as another technique to find the

distance to an obstacle/ feature in the image.

REFERENCES

[1] Lowe, D.G. 1999. Object recognition from local scale-invariant
features In International Conference on Computer Vision, Corfu,

[2] Kaess, M. and Dellaert, F., \Visual SLAM with a multi-camera rig,"

Tech. Rep. GIT-GVU-06-06, Georgia Institute of Technology, Feb
2006.

[3] A.J. Davison. Real-time simultaneous localisation and mapping with a

single camera. In Intl. Conf. on Computer Vision. (ICCV), pages
1403–1410, 2003.

[4] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), volume
1, pages 652–659, 2004.

