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Abstract—Localization and mapping are common 

requirements in many robotic applications. Mobile robots often 

rely on sophisticated sensors to obtain information about the 

environment. However, when the sensing capabilities of the 

robotic platform are limited, creating maps and keeping track 

of the localization become cumbersome. Our project is aimed at 

providing a solution to this problem by using computer vision 

algorithms to extract information from the environment. More 

specifically, we extracted images from the single camera in the 

Rovio platform, and use them to detect obstacles, extract 

distances, and keep track of the position and orientation of the 

robot in order to enable autonomous navigation.   

I. INTRODUCTION 

ISION has become one of the most useful techniques in 

robotic environments. Images provide extensive 

information that can be used to implement common tasks 

that enable robots to understand their surroundings. Since 

cameras are usually cheap and power-efficient devices 

compared to other more sophisticated sensors, the use of 

computer vision becomes a good alternative for sensing 

purposes. Nevertheless, extracting information from images 

is not straightforward task. Images usually consist of two 

dimensional grids composed of pixels that contain color and 

brightness data. This representation maps real objects into 

two dimensional structures and therefore the depth 

information is lost. Consequently, distances and angles are 

not easily identifiable as may be the case with other more 

expensive sensors. 

Currently, many frameworks already exist for doing 

localization and mapping. Since these implementations are 

not dependent on the type of sensing device, one should be 

able to use the camera to sense the environment and then 

feed the obtained data to the existing algorithms. As long as 

accurate measurements are extracted, the robot should be 

able to implement robust localization and mapping 

techniques. The actual problem lies on obtaining the correct 

information from images. Our main goal was precisely to 

implement vision techniques to obtain accurate data, and 

then use it to enable the robot to perceive the environment 

and act accordingly. 

Recently, the area of visual processing has become more 

popular and significant research has resulted in very 

sophisticated vision algorithms. More precisely in robotics, 

the area of visual SLAM (Simultaneous Localization and 

Mapping) is currently receiving much attention. Some good 

examples are given in [2], [3], [4]. Some of the previous 

work is based on using a single camera to obtain information 

directly from images [3], whereas others use multiple 

 
 

cameras to perform different types of triangulations in order 

to obtain the desired information. [4]. One of our goals was 

to implement similar approaches and combine them to 

obtain accurate distances to obstacles.  

The end goal of our project was to implement localization 

and mapping using the single camera in the Rovio platform. 

Rovio is a WIFI-controlled robotic webcam developed by 

WowWee. It has navigation capabilities and it constantly 

streams images that can be retrieved and processed. We 

chose Rovio because toys and home applications are among 

the most promising market fields for the use of vision in 

robotics. In order to achieve localization and mapping we 

divided our tasks into three stages. The first stage consisted 

in accurately measuring the distance to the obstacles around 

the robot. For this purpose, we combined multiple distancing 

algorithms. The second stage consisted on keeping track of 

the angle rotation of the robot while exploring the 

environment. For this, too, we used vision techniques that 

enable the robot to identify features that enable it to keep 

track of orientation. Finally, the obtained data from the 

distance detection and the localization was send to an 

implementation of an occupancy grid that represents the 

environment. The rest of the paper describes each of the 

three stages in more detail. Our implementations were tested 

in the robotics laboratory at Cornell University, and the 

results are presented at the end. 

II. OBJECT DISTANCING 

A. General 

To extract the distancing to the obstacles from the images, 

we first used a combination of filters to extract the 

edges.  We use a 7x7 Gaussian filter to smooth out the image 

in an attempt to ignore the edges normally detected in the 

coloring of the carpet. The image is then converted to 

grayscale.  In order to extract the edges from the image we 

use a canny filter with threshold values of 0.25 and .09 for 

the initial detection and the connected edge detection, 

respectively.  This produces nice strong edges to base our 

measurements on.  These threshold values were varied and 

the outputs analyzed to determine the best tradeoff in terms 

of false ground edges and strong obstacle edges. 
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B. Stereo Distancing 

The stereo vision algorithm uses an image from each of the 

Rovio’s head positions at a stationary position.  This enables 

us to determine the distance between the same edge in both 

images, which correlates to an actual distance to the object.  

The first step in this algorithm is to determine the pixel 

distance between corresponding edges in each of the images.  

Our approach was simply to find the bottommost edges at 

each column of the image taken with the upper head 

position.  This was done with the upper image because the 

lower image often detected edges in the carpet immediately 

in front of the robot, while the vantage point of the upper 

head position did not detect these edges.  By only taking into 

account the bottommost edges we were able to focus on the 

obstacles in the immediate vicinity of the robot and did not 

have to deal with more complex ways of determining what 

constituted a unique distinct edge, and matching edges 

between images.  Using data obtained from controlled 

experiments we determined the pixel distance ranges that 

would be experienced in the lab environment, based on the 

closest obstacle that would show up in both images being the 

lower end and the size of the lab being the upper end of the 

range.  Since we are dealing with the closest edge to the 

bottom in the upper image, the corresponding edge in the 

lower image will be the first one seen in the same column 

starting from the minimum pixel distance and moving to the 

maximum.  An edge that was not detected between these 

ranges indicates a missing corresponding edge in one of the 

images and that measurement is ignored. 

The bottom edge could not be used from the bottom image 

because of the existence of false edges detected in the carpet.  

This is the reasoning behind using the bottom edge in the top 

image and iterating through the range of possible pixel 

distances from that edge to find the corresponding edge in 

the lower image.  A built-in Matlab regression algorithm 

was used to fit the data points taken to a function that returns 

the actual distance to an obstacle given the pixel distance 

between the stereo images.   

C. Ground Distancing 

Two other algorithms were used to make the distancing 

robust because of the subtle differences in edges detected by 

the obstacle-carpet intersection.  Depending on the lighting 

and the particular obstacle edges would be detected at 

different heights especially between the upper and lower 

images most likely because of the vantage point difference.  

For example, the edge detected between a trash can and the 

carpet would always be higher than one detected on a wall at 

the same distance.  For this reason, to make this algorithm 

robust and applicable to a real world environment with 

varied obstacles it was necessary to make multiple 

distancing algorithms to compensate.  This second approach 

involved using the absolute pixel distance from the bottom 

of the image to range the objects.  The theory behind this is 

that further away obstacles appear higher up in the image, or 

closer to the horizon.  This enables us to determine a 

mapping from the lowest edge pixel location in the image to 

an actual distance for each of the upper and lower images.  

Again, a built-in Matlab regression algorithm was used to fit 

data points taken for each of the head positions to functions 

that return the actual distance given the edge location in the 

image.   

The absolute pixel location of the bottom edges in the 

image from the upper head position was already determined 

from the stereo vision algorithm, so this merely required 

passing that location into the distancing function.  The pixel 

location of the edges in the image from the lower head 

position was a bit trickier.  After some analysis of the edge 

extracted images in different lighting environments it was 

determined that the false edges detected in the carpet were 

nearly always below a certain pixel location in the image.   

Thus, any pixels below this point were discarded and the 

pixel location of the lowest edges of the resulting image was 

determined for each column.  These locations were then 

passed into the function to map the pixel locations of the 

lower head position image into obstacle distances.  An 

example image is given in Figure 3 (the two seemingly 

Fig. 1. Rovio image with head in lower 

position and edge extraction. 

Fig. 2. Rovio image with head in lower 

position and edge extraction. 
Fig. 3. Rovio lowest detected edges with 

head in lower position and distance output 

-200 -150 -100 -50 0 50 100
0

100

200

300

400

500

600

700
Combined

Stereo

Ground

Ground Up



  

random edges detected in the middle are actually objects on 

the carpet). 

D.  Output Distance 

In each of these algorithms the image was segmented into 

24 discrete measurements, each represented with its own 

angle off of the orientation of the robot.  Through testing we 

had determined that the Rovio’s angle of vision was around 

48.5 degrees horizontally. The distances between the pixels 

corresponding to the discretely sampled angles were 

calculated using basic geometry theory. Assume a point 

object at a distance of d from a straight line. The 

perpendicular distance of the line from the point is going to 

be at vertical angle of 0 degrees. However, when the angle to 

the line form the vertical distance is varied on either side, the 

distance change of the new point from the central point is 

going to increase nonlinearly. Thus, to account for the 

variation in the pixel point as the angle is varied from -24.25 

to 24.25 (where 0 degrees corresponds the central pixel), a 

simple sine function was used to account for the change in 

pixels. This is given as follows: 

 

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = 316 + 316 ∗ 𝑠𝑖𝑛𝑒  
𝑥

48.5
∗ 90      (1) 

 

Where x represents the angle that the pixel value is desired 

and image width used was 632 pixels.  

Thus the number of pixels associated with each of these 

angles is non-uniform and the area representing an angle at 

the edge of the image is larger than that in the center of the 

image. The range of pixels corresponding to each angle was 

taken to be from the center of the segments on either side of 

that particular angle. In each segment the median value was 

taken to be the measurement of that segment to ignore 

extreme values.   

These distances were plotting according to the angular offset 

from the center of vision from the Rovio to plot the exact 

location of the obstacle.    

This gives us three different distance measurements to 

work with, creating a more robust distancing algorithm.  

After much testing and analysis it was decided that the most 

effective way of combining these three distancing 

approaches was to average them together.  This averaging 

was done for each of the 24 segments.  An exception to this 

combination is when the distance given by the absolute pixel 

location for the image with the Rovio’s head in the lower 

position is less than 80 mm.  In this case the image with the 

Rovio’s head in the upper position cannot see the 

intersection of the carpet and the obstacle because the 

distance is too small, so the lower head position 

measurement is used.  The reason these measurements are 

averaged normally is that they generally compensate for 

small errors because of the imperfections in the edge 

detection and accuracy based on the size of the image.  

These combined measurements are very accurate and almost 

always give better results than any single algorithm.  

Although the stereo vision is very accurate, it is imperfect 

because of the edge detection picking up different edges 

based on the differing perspectives of the rovio’s head in the 

lower and upper positions.  In the upper position, the 

lighting can cause the rovio to detect a lower edge of the 

obstacle because of its better vantage point of the 

intersecting line between the carpet and the obstacle.  This 

mainly occurs for more distant obstacles because the further 

away the object is the less defined the intersection is with the 

lower head position.  In fact, for close obstacles all of the 

distancing algorithms give accurate values within 15mm of 

each other.     

III. SIFT LOCALIZATION 

A. General 

One difficulty we encountered when trying to obtain a map 

of the environment was the inaccuracy of the movements of 

Rovio. While mapping a specific section, the robot is 

programmed to constantly rotate, take pictures, and process 

them to obtain distances to obstacles. Nevertheless, every 

time we send a specific movement command to the robot, it 

has a significant error associated with it. Furthermore, the 

commands would sometimes get lost in the network and the 

program would not have any feedback on the actual actions 

taken by the robot.  Consequently, when rotating the robot 

multiple times, the error would increase and the positions of 

the obstacles would be mapped to wrong places in the map. 

Moreover, the robot would not have information about its 

orientation and therefore no more mapping would be 

possible.  

For this reason, we needed a way to read the angle 

rotations that would allow it to keep track of its orientation 

without relying on the actual commands. Since the camera is 

the only sensing capability of Rovio, we decided to use a 

vision approach to obtaining the angles. The method we 

implemented consisted of extracting features from the 

images using the SIFT algorithm and the comparing them to 

obtain an estimate of the actual rotation angle. 

B. SIFT 

Scale-invariant feature transform is a computer vision 

algorithm published by David Lowe [1] that extracts local 

features from images. These features are scale and 

orientation invariant, and to a certain extent, they are also 

invariant to noise and illumination. From an intuitive 

perspective, the algorithm works by applying a cascade of 

filters at different scales, and then finding the features that 

are invariant to certain transformations. From a user point of 

view, the algorithm provides two important functions. The 

first one is for feature extraction and it receives an image 

input and outputs an array of descriptors that have feature 

information, together with the index in the original image. 

The second function is in charge of matching between two 

different images. It receives the images, the descriptors array 

for each of them and returns an array tuples of size two that 

have the index of each image for each match.  

For our project, we used an implementation of the protocol 

for MATLAB developed by Andrea Vedaldi from the 

University of California Los Angeles.  

 



  

C.    OUR IMPLEMENTATION 

To keep track of the rotation angle of the robot we used the 

invariant features provided by SIFT. The implemented 

method consisted of using the images that were already 

taken for the distancing algorithm, and perform feature 

extraction using SIFT. After each rotation, a new picture is 

taken and new features are obtained. The features from 

subsequent angle positions are compared and their difference 

is mapped to a rotation angle.  

 

The feature descriptor provided by SIFT gives information 

about the position and rotation of the features. Since we 

know a priori that the robot is only rotated we can reinforce 

the requirement that features must have very similar y-axis 

position, and orientation, and features that do not fit these 

requisites are discarded.  

Initially, the idea was to either fit an experimental function, 

or use a learning algorithm to accurately map the pixel 

distance of the features to an able. Nevertheless, a simple 

linear function using the able span of the Rovio camera and 

the number of horizontal pixels of the image gave excellent 

results. Figure 5 illustrates the angle extraction method. The 

first two images are the pictures taken by Rovio. The left-

hand image is the one taken in the initial position, and the 

right-hand image is the one taken after rotating left. The 

second picture presents the extracted features from the 

environment, and the green lines connect the features that 

matched between the two pictures. Clearly, the images with 

the features are a cropped version of the original images, and 

this was done intentionally to increase the speed of the  

 

 
 

Fig. 4 Feature extraction for angle estimation. 

 

algorithm, because it is very time consuming. Furthermore, 

we know that the bottom most part of the image which 

includes the carpet is not going to be optimal for feature 

extraction. In addition, we used a very high threshold for the 

feature extraction function and for the matching function as 

well. This is the reason for which there are very few green 

lines in the image with feature matches.  

Furthermore, at some instances the input angle to the 

function was predefined, and the implemented function 

could use this information to further increment the speed. In 

these cases, the image would also be cropped vertically 

because for example for a 20 degree rotation angle, we know 

a priori that certain sections of the picture are not going to 

match and we don’t need to use them in the extraction and 

matching process.  

Overall, the precision of the implemented technique was 

very satisfactory. We found that after doing two full 360 

degree turns with increment rotation of 20 degrees, the robot 

would t the end have a mismatch of approximately 2 degrees 

which is very accurate considering that there were 36 turns 

involved and also considering that without our 

implementation the robot could reach mismatches of more 

than 60 degrees under the same circumstances. 

IV. MAPPING 

A. General 

The above two sections describe the information that the 

Rovio robot analyzes to define its environment. However, in 

order to successfully navigate the robot in its surrounding, a 

map of the environment is required to track the placement of 

obstacles and the pose of the robot. Different options can be 

used to represent the map of the environment but the two 

basic options that were considered were a point cloud 

representation and an occupancy grid.  

B. Mapping Representation Considerations 

A point cloud representation of the map displays the 

actual distances that are calculated by the distancing 

algorithms. This can give rise to obstacle features and 

corners in the map. However, this method requires the 

ranging information to be highly accurate such that the 

obstacles can be given shape during representation. As will 

be showed in the experiments sections, the distancing 

algorithms have a certain error associated with them and 

thus, the point cloud would not be able to account for the 

variation in the ranging information and might skew the 

shape of the obstacle as a result and would thus be 

undesirable. Another con of using a point cloud in a real 

time moving robot is that since each distance range found at 

an angle is stored, the number of points to keep track of 

could increase drastically. Because of these issues, a point 

cloud was an inefficient way to keep track of obstacle 

positions.  

In our setup, an occupancy grid was more preferable 

because of its discrete nature and limited memory usage. It 

can be used to efficiently track an approximate position of 

the obstacle and avoid it well before the robot reaches it. An 

occupancy grid is represented by a mesh of cells (rows and 

columns) and each cell has a certain fixed area on the map 

associated with it such that all the points in that area are 

represented by that singular cell. The area represented by a 

cell of the occupancy grid can be set using any parameter/ 

condition as desired by the specific implementation. For 

example, a very fine grid would give an (almost) point cloud 

representation of the map. A very large cell area might 

surround the robot with obstacles in the map even if there 

are only a few surrounding the actual robot. For our 

implementation, the maximum variation in the distancing 

algorithms was used to determine the edge of a cell in the 

map. Even though the map was represented as a discrete 

grid, the robot movement was continuous.  



  

To define whether an obstacle exists in the occupancy 

grid, a threshold value was set such that if the number of 

distancing points detected in a particular cell exceeded that 

threshold, the cell would be marked as occupied. Thus, the 

occupancy of a cell would depend on whether its probability 

was high enough.   

C. Control Sequence 

A control sequence was implemented to control the 

efficient movement of the robot and to ensure that the map 

of the surrounding environment was created efficiently and 

the pose of the robot was tracked accurately. The 

following sequence was following by the Rovio robot in 

mapping: (Initially, robot placed in some location on the 

map with pose (0,0,0) corresponding to position and 

orientation) 

 

- Rotation sequence begin - At the current pose (starting 

from the initial position), the robot was to move its 

head up and down and grab the images corresponding 

to the 2 head positions. 

- These images were forwarded to the distancing 

algorithm to find the distanced to each of the obstacles 

at particular angles. These obstacles were mapped to 

the occupancy grid using the current pose.  

- The robot was then turned left by 20 degrees and an 

image was grabbed at the new orientation. The SIFT 

algorithm was provided with the image from before 

and after the turning to determine the precise angle of 

rotation during the turn. This angle change was 

reflected in the robot pose as well. 

- If the robot did not turn 360 degrees in the rotation 

sequence, then the robot would keep on turning. 

Otherwise, the rotation sequence would end and the 

robot would analyze the current map to obtain the 

most open or the cleanest direction that it can travel 

in. It would calculate the approximate distance to 

travel in this direction and would move until it is a 

certain distance away from the map obstacle or edge. 

- After traveling the required distance, the robot would 

initiate the rotation sequence again and start building 

another part of the map. It would discover new regions 

of the map and would reinforce old areas as well. 

 

This sequence corresponds to a semi-online SLAM 

implementation as the robot only builds the map, localizes 

itself and calculates the distances when it’s in the rotation 

sequence but does not do any image processing while it is 

moving towards its next goal position (as that would 

introduce a large amount of lag in the movement). This 

implementation gave a very good representation of the map 

of the setup environment as is explained in the experiments 

section. 

V. EXPERIMENTS 

A. Distancing 

The distancing algorithms had to be calibrated for each 

individual Rovio because of the non-uniformity in the design 

of the Rovios.  The camera angles of the Rovios were not all 

exactly the same in the down position and the distances they 

moved as well as the angle of the up position were varied 

even more.  This lead to acquiring data for many Rovios 

until a working one was settled upon to use exclusively.  The 

data acquisition to fit functions to the stereo and each of the 

ground distancing algorithms was performed by hand 

because of a lack of a real distance sensor on the Rovio.  

Thus we used two different obstacles, each of which gave a 

slightly different behavior of the edges detected as 

previously described.  For each of these we took a number of 

data points at discrete distances and recorded the edge 

location of the obstacle in the edge extracted image for each 

of the lower and upper head positions.  After analyzing the 

data patterns and fitting different function types to the data it 

was determined that the data for each of the algorithms 

followed exponential functions.  Using Matlab’s built-in 

regression fitting algorithm the data-sets were fit to function 

of the form 

𝑓 𝑥 =  𝑎𝑒𝑏∗𝑥 + 𝑎𝑒𝑏∗𝑥                            (2)   
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    Figure 5: Vision Distancing data 

 



  

The data used for the ground algorithms was simply the 

pixel location of the obstacle in their respective images.  The 

data used for the stereo algorithm was the pixel difference 

between the two edges.  The independent variable was the 

pixel location, or distance, outputting the actual distance to 

the obstacle.  The data and exponential function fit to each 

of them are given in Figure 5.  
 

B. Mapping 

To test the rovio’s distancing algorithms and SIFT 

localization, an environment was set up with a variety of 

features. Obstacles were included in the environment that 

had a well defined edge and that could be mapped easily. 

Other varied obstacles were also included to test the 

distancing algorithms on a wide variety of surfaces. The 

distribution of the obstacles in the environment was varied 

as well such that we could test obstacles that were closely 

stacked and obstacles that were sparsely placed. The whole 

setup was segmented into 2 sections such that the rovio is 

able to go to a different section when its moving and map 

distances to new obstacles placed in that section. A few 

images of the environment as shown as follows and the 

actual scaled environment representation is shown in 

figure 6: 

 
Fig. 6. Environment map (walls are thicker than they appear) 

 

 

Using this environment, the control sequence was 

executed to test the response of the rovio. As was shown in 

the video during the poster session presentation, the rovio 

was able to map the room very well at its initial location 

and was able to find the cleanest direction in the map. It 

was then able to travel in this direction and stop at a 

certain distance away from the obstacle and map the 

environment again. The following is a snapshot of the final 

pose and map obtained by the rovio as shown in the video. 

 

 

 
Fig. 7. Experimental map. Black = data point. Red = occupied grid 

A to-scale mapping of the environment is given in Figure 

6.  This corresponds closely to the output of the mapping 

function as given in Figure 7.  In fact, all of the well defined 

obstacles in the occupancy grid are very close to their actual 

positions.  The back desk is not considered a well defined 

obstacle because it is off of the ground but its shadow 

creates some edges, causing problems for the algorithm.  As 

can be seen in Figure 6 there is no concentration of pixels 

for the desk, aside from the chair and backpack in the front 

of it, because of the shadow edges.  The distancing in 

conjunction with angular localization and mapping worked 

very well, accurately mapping the environment with an 

average of 18.46 cm error.  Table I gives some mapped 

positions and actual positions of the same points.  The actual 

distances were roughly measured and are by no means 

perfect, but there is a close correspondence between these 

actual and mapped positions.  The positions are based on the 

starting position of the robot at 500,500.  All measurements 

are in cm. 

  The algorithm performed very well given the varied nature 

of obstacles used.  This approach was used to determine the 

robustness and ability of the algorithm to adapt to new 

obstacles.  More testing is necessary to verify it for varied, 

larger environments.  Also, since obstacle classification is 

not performed this algorithm would not work well with tiled 

floors with different colored tiles or edges that would be 

detected between them.   

 

 



  

TABLE I 

Mapping vs. Actual Positions and Associated Errors 

 

Mapped Position 

(x,y) 

Actual Position 

(x,y) 

Distance Error 

(500,653) (500,659) 6 cm 

(632,637) (649,653) 18.03 cm 

(651,593) (649,571) 22.09 cm 

(500,331) (500,350) 19 cm 

(866,491) (886,493) 20.10 cm 

(858,401) (841,402) 17.03 cm 

(795,656) (795,629) 27 cm 

Average Error 18.46 cm 

 

VI. CONCLUSIONS 

The unique challenges presented by the usage of Rovio robot 

as the choice of mobile robot system allowed us to 

efficiently optimize our code and develop algorithms and 

control sequence to map out the environment and localize 

the robot in it. The limitations offered by the rovio robot 

with regards to connectivity, localization data and movement 

allowed us to explore different techniques to improve 

performance and dissect different aspects of the robot such 

that we could create a good representation of the 

surroundings. Given the extensive limitations of the rovio 

platform, especially with the useless localization and control 

commands, we were able to successfully map out a simple 

environment using only a camera.  This work can be 

extended to different platforms and would be useful if 

implemented in simple robots with visual sensors.  More 

work needs to be done to speed up the processing time and 

optimize the algorithms to be more robust and work in 

different environments with varying obstacles, but it has 

been proven to be effective thus far.  Future work in this area 

can include SURF implementation for angular localization 

and feature magnification as another technique to find the 

distance to an obstacle/ feature in the image. 
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